B.R.S.M. Yield isn't everything

5Jul/133

Non-Thermal Microwave Effects: Probably Still Bollocks

Thanks to Brandon and Martyn for pointing out these publications. Be warned, this post turned out seriously long and wordy!

mcontent

Almost since the dawn of microwave chemistry, which began in the 1980s with people simply putting Erlenmeyer flasks full of reactants in domestic microwaves, chemists have reported all kinds of improvements from heating in this fashion. To name a few of the more common ones, I've heard people claim higher yields, shorter reaction times, cleaner reactions, different selectivities, milder conditions and better overall energy efficiency. Microwave chemistry can be a good thing, and many of these effects are real, widely observed phenomena; the problem is that chemists disagree on their origins. However, comparison between microwave and conventionally heated reactions is fraught with difficulties. One obvious factor is that microwave reactions, at least in the organic chemistry labs that I’ve worked in, are inevitably conducted in sealed tubes, which makes direct comparison to the ‘open’ systems that are typically used in conventional reaction set-ups. Heck, even in open systems, superheating of solvents past their boiling points can occur if nucleation sites are lacking – even two reactions apparently refluxing in the same solvent can be at different temperatures! In fact, simply getting the temperature wrong is probably the major reason for the disparate results obtained when conventional reactions are compared to their microwave ‘equivalents’. This isn't helped by the fact that your average lab microwave only reads the reaction temperature by IR measurements of the surface of the reaction vessel; I’ve heard descriptions of this practice ranging from ‘optimistic’ to ‘demonstrably, hopelessly inaccurate’.

DSC_0012

I'm reusing this photo of a microwave just to break up the text a bit!

Because of these (and various other) hard-to-pin-down factors, it’s actually pretty hard to compare conventional and microwave heated reactions, and not everyone has the kit required to do so properly. This has led to numerous claims of so called ‘non-thermal’ or ‘specific’ microwave effects in the literature. These generally explain the apparent benefits of microwave heating by claiming that the microwaves don’t just simply heat the reaction medium (hence ‘non-thermal’), but instead excite (or even stabilise!) particular bonds or intermediates directly, in a fashion distinct from simple macroscopic heating of the reaction mixture. Such claims have been debunked for over a decade, and physical chemists will tell you—at least in the liquid phase—that energy is redistributed amongst the molecules in the reaction vessel on a much shorter timescale than the period of the microwaves used to excite them, making specific heating of one species over another unlikely. Certainly, temperature gradients and macroscopic hotspots may well exist (particularly in viscous/high dielectric/inadequately stirred media), and are readily measured with a temperature probe, but I’ve yet to see credible evidence for the molecular-scale thermal aberrations that are continually reported. It seems that, when investigated in detail, with care to eliminate other factors, claims of non-thermal effects have yet to stand up to scrutiny. In fact, I'm a little baffled as to why we see the continued reporting of results predicated on this phenomenon, with few proper control experiments. I'm not saying that they don't exist, and I'll happily accept their existence when sufficient proof is presented, but I think a lot of rubbish is generally talked on the subject.

One of the most prominent chemists to voice their disbelief in so called ‘non-thermal microwave effects’ is Austrian Professor Oliver Kappe, who's been countering such claims in the literature for at least as long as I’ve been a chemist. He periodically publishes smack-downs of claims of chemistry of this type, most recently in an Angewandte Chemie Essay that appeared just before Christmas (that I blogged about at the time). One of the groups whose work he criticised was that of Gregory Dudley at Florida state university, and things escalated this week with the publication of Dudley's reply to Kappe’s attack, followed swiftly by a further rebuttal by Kappe. The last ‘literature boxing match’ of this type that I can recall was the citalopram back-and-forth in OPRD a couple of years back, covered at the time by Derek over at In The Pipeline, and while the claims made by either side here are not in the same league of dubiosity there’s plenty of thinly veiled frustration and strained civility to enjoy!

Filed under: BRSM Reviews, Current Literature, Serious | 6,314 views | 3 comments Continue reading
6Sep/129

(+)-Prostaglandin PGF2a

Update 16-09-12: just found out that this has also been written about over at the greenchemblog. If you fancy an alternative take with more detail and less history, look over there!

 

Stereocontrolled organocatalytic synthesis of prostaglandin PGF2α in seven steps

Aggarwal et al., Nature, 2012 [PDF] [GROUP] [SI]

DOI: 10.1038/nature11411

 

I’ve heard it said a few times that if you can’t be the first to synthesise a natural product, then you should try and be the last; that is, you should aim to come up with the most elegant and efficient route you can now that the pressure’s off and there’s less of a rush. I think that some really popular molecules are still waiting for a ‘last’ synthesis (e.g. taxol), as even the best routes devised to date still seem ‘too long’ and are larded with too many oxidation level adjustments and protecting group juggling steps. Obviously synthetic organic chemistry – like any science – is constantly improving so the aim is to devise the best solution possible at the time, and to learn something along the way. A good synthesis is timeless.[1]

Filed under: BRSM Reviews, Current Literature, Total Synthesis | 15,578 views | 9 comments Continue reading
20Nov/118

BRSM Reviews: Taxol In 10 Minutes

 

If you're reading this then I reckon you've probably heard of taxol, as it's one of the most talked about synthetic targets of all time. It's a molecule with a fascinating history, from its isolation and structural assignment in 1971, to discovery of its potent activity and interesting mode of action, and the ensuing scrabble to solve the supply problems plaguing its development as a drug.[1] Its rise to success as a billion dollar pharmaceutical was stellar, and is one of my favourite examples of how useful and important synthetic organic chemistry is. Although it's been 5 years since the most recently reported synthesis of taxol, last week's Baran synthesis of taxadiene (following his cyclase-oxidase mimic plan for elaboration of this hydrocarbon into taxol) seems to have again gotten chemists talking excitedly about this target. After overhearing things like 'didn't Nicolaou make it first?', 'there've only been x syntheses so far' (where x is 0-6) and other such misinformation in our office I've decided to take action. Yes, there are already numerous reviews, book chapters and even entire books on this subject, but it seems that a lot of people don't have the time or inclination to read them. So, here's a brief summary of the 7 syntheses published so far, in the order they were completed. Hopefully this'll help put recent developments in perspective.

Filed under: BRSM Reviews, Literature, Total Synthesis | 13,531 views | 8 comments Continue reading